Calculation of Chern number spin Hamiltonians for magnetic nano-clusters by DFT methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Spin-Chern Insulators with Magnetic Order

As a topological insulator, the quantum Hall (QH) effect is indexed by the Chern and spin-Chern numbers C and Cspin. We have only Cspin = 0 or ± 1/2 in conventional QH systems. We investigate QH effects in generic monolayer honeycomb systems. We search for spin-resolved characteristic patterns by exploring Hofstadter's butterfly diagrams in the lattice theory and fan diagrams in the low-energy ...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Robustness of the Spin-Chern number: An analytic proof

Ever since introduced, the topological properties of the Spin-Chern (Cs) have been discussed and re-discussed in a fairly large number of works. On one hand the original paper by Sheng and collaborators revealed robust properties of Cs against disorder and certain deformations of the model and, on the other hand, other people pointed out that Cs can change sign under special deformations that k...

متن کامل

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2008

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.77.174416